The Open-source SPL Boosts MongoDB Computing Ability
MongoDB is a typical NoSQL database. Its document-oriented structure makes both storage and access convenient and efficient. But the database has rather weak computing ability. Computations on MongoDB data, particularly complex ones, are hard to handle. A data computing engine having powerful computing capability is needed to work with MongoDB to achieve relevant computing tasks.
The open-source esProc SPL is a specialized structured data computation engine. It supplies rich class libraries and all-around, database-independent computational capabilities. SPL has an independent procedural syntax that is particularly good at handling complex computations. It can help MongoDB increase its ability to compute, accomplish grouping & aggregation, joins, subqueries, and all the other computing tasks effortlessly.
Regular queries
It is easy to achieve JOINs MongoDB finds it difficult to handle in SPL:
A |
B |
|
1 |
=mongo_open("mongodb://127.0.0.1:27017/raqdb") |
/Connect to MongDB |
2 |
=mongo_shell(A1,"c1.find()").fetch() |
/Fetch data from MongoDB |
3 |
=mongo_shell(A1,"c2.find()").fetch() |
|
4 |
=A2.join(user1:user2,A3:user1:user2,output) |
/Perform join |
5 |
>A1.close() |
/Close connection to MongoDB |
SPL can reuse the result of handling data of a table that is repeatedly involved in computations:
A |
B |
|
1 |
=mongo_open("mongodb://127.0.0.1:27017/raqdb") |
|
2 |
=mongo_shell(A1,“course.find(,{_id:0})”).fetch() |
/Fetch data from MongoDB |
3 |
=A2.group(Sno).((avg = ~.avg(Grade), ~.select(Grade>avg))).conj() |
/Get documents where grading level is above average |
4 |
>A1.close() |
Perform IN conditional query in SPL:
A |
B |
|
1 |
=mongo_open("mongodb://localhost:27017/test") |
|
2 |
=mongo_shell(A1,"orders.find(,{_id:0})") |
/Fetch data from MongoDB |
3 |
=mongo_shell(A1,"employee.find({STATE:'California'},{_id:0})").fetch() |
/Select certain employee documents |
4 |
=A3.(EID).sort() |
/Get EID field and sort it |
5 |
=A2.select(A4.pos@b(SELLERID)).fetch() |
/Perform binary search |
6 |
>A1.close() |
SPL’s technique to turn foreign key values to objects – the object-referencing foreign key – creates efficient foreign key pointers:
A |
B |
|
1 |
=mongo_open("mongodb://localhost:27017/local") |
|
2 |
=mongo_shell(A1,"Progress.find({}, {_id:0})").fetch() |
/Fetch Progress data |
3 |
=A2.groups(courseid; count(userId):popularityCount) |
/Group and count by course |
4 |
=mongo_shell(A1,"Course.find(,{title:1})").fetch() |
/Get Course data |
5 |
=A3.switch(courseid,A4:_id) |
/Foreign-key-based join |
6 |
=A5.new(popularityCount,courseid.title) |
/Create result set |
7 |
=A1.close() |
SPL achieves APPLY algorithm in a simple way:
A |
B |
|
1 |
=mongo_open("mongodb://127.0.0.1:27017/raqdb") |
|
2 |
=mongo_shell(A1,"users.find()").fetch() |
/Fetch users data |
3 |
=mongo_shell(A1,"workouts.find()").fetch() |
/Fetch workouts data |
4 |
=A2.conj(A3.select(A2.workouts.pos(_id)).derive(A2.name)) |
/Get matching _id values from the sequence of workouts documents |
5 |
>A1.close() |
SPL’s way of performing set-oriented calculations – intersection, union, difference and concatenation:
A |
B |
|
1 |
=mongo_open("mongodb://127.0.0.1:27017/raqdb") |
|
2 |
=mongo_shell(A1,"emp1.find()").fetch() |
|
3 |
=mongo_shell(A1,"emp2.find()").fetch() |
|
4 |
=[A2,A3].conj() |
/Concatenation of sequences |
5 |
=[A2,A3].merge@ou() |
/Union by whole row comparison |
6 |
=[A2,A3].merge@ou(_id, NAME) |
/Union by key value comparison |
7 |
=[A2,A3].merge@oi() |
/Intersection by whole row comparison |
8 |
=[A2,A3].merge@oi(_id, NAME) |
/Intersection by key value comparison |
9 |
=[A2,A3].merge@od() |
/Difference by whole row comparison |
10 |
=[A2,A3].merge@od(_id, NAME) |
/Difference by key value comparison |
11 |
>A1.close() |
Get sequence number of a member in a sequence in SPL:
A |
B |
|
1 |
=mongo_open("mongodb://localhost:27017/local) |
|
2 |
=mongo_shell(A1,"users.find({name:'jim'},{name:1,friends:1,_id:0})").fetch() |
|
3 |
=A2.friends.pos("luke") |
/Get sequence numbers of members in sequence friends |
4 |
=A1.close() |
Perform intersection of multi-member collections in SPL:
A |
B |
|
1 |
[Chemical, Biology, Math] |
/Courses |
2 |
=mongo_open("mongodb://127.0.0.1:27017/raqdb") |
|
3 |
=mongo_shell(A2,"student.find()").fetch() |
/Fetch student data |
4 |
=A3.select(Lesson^A1!=[]) |
/Get documents where at least one course is selected |
5 |
=A4.new(_id, Name, ~.Lesson^A1:Lession) |
/Get the final result |
6 |
>A2.close() |
Complex queries
Getting TopN in SPL:
A |
B |
||
1 |
=mongo_open("mongodb://127.0.0.1:27017/test") |
||
2 |
=mongo_shell(A1,"last3.find(,{_id:0};{variable:1})") |
/Get last3 data and sort it by variable |
|
3 |
for A2;variable |
=A3.top(3;-timestamp) |
/Get the three documents having the latest timestamps |
4 |
=@|B3 |
/Append the selected documents to B4 |
|
5 |
=B4.minp(~.timestamp) |
/ Get documents with earliest timestamp |
|
6 |
>mongo_close(A1) |
Summarize a nested-structure collection in SPL:
A |
|
1 |
=mongo_open("mongodb://127.0.0.1:27017/raqdb") |
2 |
=mongo_shell(A1,"computer.find()").fetch() |
3 |
=A2.new(_id:ID,income.array().sum():INCOME,output.array().sum():OUTPUT) |
4 |
>A1.close() |
Combine subdocuments made up of multiple attributes in SPL:
A |
B |
C |
|
1 |
=mongo_open("mongodb://localhost:27017/local") |
||
2 |
=mongo_shell(A1,"c1.find(,{_id:0};{name:1})") |
||
3 |
=create(_id, readUsers) |
/Create result table sequence |
|
4 |
for A2;name |
=A4.conj(acls.read.users|acls.append.users|acls.edit.users|acls.fullControl.users).id() |
/Get all users fields |
5 |
>A3.insert(0, A4.name, B4) |
/Insert the current group of data to the result set |
|
6 |
=A1.close() |
Query nested List subdocument in SPL:
A |
B |
|
1 |
=mongo_open("mongodb://localhost:27017/local") |
|
2 |
=mongo_shell(A1,"Cbettwen.find(,{_id:0})").fetch() |
|
3 |
=A2.conj((t=~.objList.data.dataList,t.select((s=float(~.split@c1()(1)), s>6154 && s<=6155)))) |
/ Get eligible strings |
4 |
=A1.close() |
SPL Cross-sector aggregation:
A |
|
1 |
=mongo_open("mongodb://localhost:27017/local") |
2 |
=mongo_shell(A1,"student.find()").fetch() |
3 |
=A2.group(school) |
4 |
=A3.new(school:school,~.align@a(5,sub1).(~.len()):sub1,~.align@a(5,sub2).(~.len()):sub2) |
5 |
=A4.new(school,sub1(5):sub1-5,sub1(4):sub1-4,sub1(3):sub1-3,sub1(2):sub1-2,sub1(1):sub1-1,sub2(5):sub2-5,sub2(4):sub2-4,sub2(3):sub2-3,sub2(2):sub2-2,sub2(1):sub2-1) |
6 |
=A1.close() |
SPL segment-based grouping:
A |
B |
|
1 |
[3000,5000,7500,10000,15000] |
/Intervals of Sales for segmentation |
2 |
=mongo_open("mongodb://127.0.0.1:27017/raqdb") |
|
3 |
=mongo_shell(A2,"sales.find()").fetch() |
|
4 |
=A3.groups(A1.pseg(~.SALES):Segment;count(1): number) |
/Group data and count employees by SALES intervals |
5 |
>A2.close() |
SPL class-based grouping:
A |
B |
|
1 |
=mongo_open("mongodb://127.0.0.1:27017/raqdb") |
|
2 |
=mongo_shell(A1,"books.find()") |
|
3 |
=A2.groups(addr,book;count(book):Count) |
/ Grouping & count |
4 |
=A3.groups(addr;sum(Count):Total) |
/ Grouping & sum |
5 |
=A3.join(addr,A4:addr,Total) |
/ Join operation |
6 |
>A1.close() |
Data writing
Export data as CSV in SPL:
A |
B |
|
1 |
=mongo_open("mongodb://localhost:27017/raqdb") |
|
2 |
=mongo_shell(A1,"carInfo.find(,{_id:0})") |
|
3 |
=A2.conj((t=~,cars.car.new(t.id:id,t.cars.name, ~:car))) |
/Split each car field value into multiple rows |
4 |
=file("D:\\data.csv").export@tc(A3) |
/Export as csv |
5 |
>A1.close() |
SPL database update (from MongoDB to MySQL):
A |
B |
|
1 |
=mongo_open("mongodb://localhost:27017/raqdb") |
/Connect to MongDB |
2 |
=mongo_shell(A1,"course.find(,{_id:0})").fetch() |
|
3 |
=connect("myDB1") |
/Connect to mysql |
4 |
=A3.query@x("select * from course2").keys(Sno, Cno) |
|
5 |
>A3.update(A2:A4,course2,Sno,Cno, Grade; Sno,Cno) |
/Update data into mysql |
6 |
>A1.close() |
SPL database update (from MySQL to MongoDB):
A |
B |
|
1 |
=connect("mysql") |
/Connect to mysql |
2 |
=A1.query@x("select * from course2") |
/Get data of course2 table |
3 |
=mongo_open("mongodb://localhost:27017/raqdb") |
/Connect to MongDB |
4 |
=mongo_insert(A3, "course",A2) |
/Insert records of MySQL table course2 into the MongoDB collection |
5 |
>A3.close() |
Mixed computations
SPL enables convenient mixed computation between MongoDB and another data source:
A |
B |
|
1 |
=mongo_open("mongodb://localhost:27017/test") |
/Connect to MongDB |
2 |
=mongo_shell(A1,"emp.find({'$and':[{'Birthday':{'$gte':'"+string(begin)+"'}},{'Birthday':{'$lte':'"+string(end)+"'}}]},{_id:0})").fetch() |
/Get records within a specified time interval |
3 |
=A1.close() |
/ Close MongoDB connection |
4 |
=myDB1.query("select * from cities") |
/ Get data of cities table in mysql |
5 |
=A2.switch(CityID,A4:CityID) |
/ Foreign-key-based join |
6 |
=A5.new(EID,Dept,CityID.CityName:CityName,Name,Gender) |
/ Create result set |
7 |
return A6 |
/ Return the result set |
SQL support
Besides the native syntax, SPL offers support of SQL92 standard. You can use SQL to query MongoDB. To achieve the above join operation, for instance:
A |
|
1 |
=mongo_open("mongodb://127.0.0.1:27017/test") |
2 |
=mongo_shell(A1,"c1.find()").fetch() |
3 |
=mongo_shell@x(A1,"c2.find()").fetch() |
4 |
$select s.* from {A2} as s left join {A3} as r on s.user1=r.user1 and s.user2=r.user2 where r.income>0.3 |
Integration into application
SPL provides standard JDBC/ODBC drivers through which SPL can be conveniently integrated into an application or invoked by it. To invoke SPL code through JDBC, for instance:
…
Class.forName("com.esproc.jdbc.InternalDriver");
Connection conn = DriverManager.getConnection("jdbc:esproc:local://");
PrepareStatement st=con.prepareStatement("call splScript(?)"); // splScript is the name of SPL script file
st.setObject(1,"California");
st.execute();
ResultSet rs = st.getResultSet();
…
With all those functionalities, you’ll sure to be impressed by MongoDB’s strikingly boosted computing ability. Try your hand now.
SPL Official Website 👉 https://www.scudata.com
SPL Feedback and Help 👉 https://www.reddit.com/r/esProcSPL
SPL Learning Material 👉 https://c.scudata.com
SPL Source Code and Package 👉 https://github.com/SPLWare/esProc
Discord 👉 https://discord.gg/2bkGwqTj
Youtube 👉 https://www.youtube.com/@esProc_SPL
Chinese version