What to use for data analysis programming, SQL, Python, or esProc SPL?
Talk is cheap; let’s show the codes
1. User Session Count
User behavior data table
userid | action_type | action_time |
---|---|---|
U1059 | login | 2023-12-01 18:00:10 |
U1092 | login | 2023-12-01 18:00:17 |
U1069 | login | 2023-12-01 18:00:22 |
… | … | … |
A session is considered over if a user does not take any action within 10 minutes, or if they do not log in within 5 minutes after logging out. Calculate the number of sessions for each user.
SPL
A | |
---|---|
1 | =file(“session_data.csv”).import@tc() |
2 | =A1.group(userid;~.group@i((action_type[-1]==“exit”&&interval@s(action_time[-1],action_time)>300)||(interval@s(action_time[-1],action_time)>600)).len():session_num) |
SQL
WITH login_data AS (
SELECT userid, action_type, action_time,
LAG(action_time) OVER (PARTITION BY userid ORDER BY action_time) AS prev_time,
LAG(action_type) OVER (PARTITION BY userid ORDER BY action_time) AS prev_action
FROM session_data)
SELECT userid, COUNT(*) AS session_count
FROM (
SELECT userid, action_type, action_time, prev_time, prev_action,
CASE
WHEN prev_time IS NULL OR (action_time - prev_time) > 60
OR (prev_action = 'exit' AND (action_time - prev_time) > 300 )
THEN 1
ELSE 0
END AS is_new_session
FROM login_data)
WHERE is_new_session = 1
GROUP BY userid;
Python
login_data = pd.read_csv("session_data.csv")
login_data['action_time'] = pd.to_datetime(login_data['action_time'])
grouped = login_data.groupby("userid")
session_count = {}
for uid, sub_df in grouped:
session_count[uid] = 0
start_index = 0
for i in range(1, len(sub_df)):
current = sub_df.iloc[i]
last = sub_df.iloc[start_index]
last_action = last['action_type']
if (current["action_time"] - last["action_time"]).seconds > 600 or \
(last_action=="exit" and (current["action_time"] - last["action_time"]).seconds > 300):
session_count[uid] += 1
start_index = i
session_count[uid] += 1
session_cnt = pd.DataFrame(list(session_count.items()), columns=['UID', 'session_count'])
2. Count the players who score 3 times in a row within 1 minute
Score table of a ball game
team | player | play_time | score |
---|---|---|---|
A | A3 | 2023-12-31 09:00:09 | 2 |
B | B1 | 2023-12-31 09:00:24 | 3 |
A | A5 | 2023-12-31 09:00:57 | 2 |
… | … | … | … |
SPL
A | |
---|---|
1 | =file(“ball_game.csv”).import@tc() |
2 | =A1.group@o(player).select(~.pselect(#>2&&interval@s(play_time[-2],play_time)<60)).(player) |
SQL
WITH numbered_scores AS (
SELECT team, player, play_time, score,
ROW_NUMBER() OVER (ORDER BY play_time) AS rn
FROM ball_game)
SELECT DISTINCT s1.player
FROM numbered_scores s1
JOIN numbered_scores s2 ON s1.player = s2.player AND s1.rn = s2.rn - 1
JOIN numbered_scores s3 ON s1.player = s3.player AND s1.rn = s3.rn - 2
WHERE (s3.play_time - s1.play_time) <60 ;
Python
df = pd.read_csv("ball_game.csv")
df["play_time"] = pd.to_datetime(df["play_time"])
result_players = []
player = None
start_index = 0
consecutive_scores = 0
for i in range(len(df)-2):
current = df.iloc[i]
if player != current["player"]:
player = current["player"]
consecutive_scores = 1
else:
consecutive_scores += 1
last2 = df.iloc[i-2] if i >=2 else None
if consecutive_scores >= 3 and (current['play_time'] - last2['play_time']).seconds < 60:
result_players.append(player)
result_players = list(set(result_players))
3. Calculate the number of users who are active for three consecutive days within every 7 days
User login data table
id | userid | ts |
---|---|---|
1 | 466 | 2017-01-07 18:24:55 |
2 | 458 | 2017-01-07 18:25:18 |
3 | 458 | 2017-01-07 18:26:21 |
… | … | … |
SPL
A | |
---|---|
1 | =file(“login_data.csv”).import@tc() |
2 | =periods(date(A1.ts),date(A1.m(-1).ts)) |
3 | =A1.group(userid).(~.align(A2,date(ts)).(if(#<7,null,(cnt=~[-6:0].group@i(!~).max(count(~)),if(cnt>=3,1,0))))) |
4 | =msum(A3).~.new(A2(#):dt,int(~):cont3_num).to(7,) |
SQL
WITH all_dates AS (
SELECT DISTINCT TRUNC(ts) AS login_date
FROM login_data),
user_login_counts AS (
SELECT userid, TRUNC(ts) AS login_date,
(CASE WHEN COUNT(*)>=1 THEN 1 ELSE 0 END) AS login_count
FROM login_data
GROUP BY userid, TRUNC(ts)),
whether_login AS (
SELECT u.userid, ad.login_date, NVL(ulc.login_count, 0) AS login_count
FROM all_dates ad
CROSS JOIN (
SELECT DISTINCT userid
FROM login_data) u
LEFT JOIN user_login_counts ulc
ON u.userid = ulc.userid
AND ad.login_date = ulc.login_date
ORDER BY u.userid, ad.login_date),
whether_login_rn AS (
SELECT userid,login_date,login_count,ROWNUM AS rn
FROM whether_login),
whether_eq AS(
SELECT userid,login_date,login_count,rn,
(CASE
WHEN LAG(login_count,1) OVER (ORDER BY rn)= login_count
AND login_count =1 AND LAG(userid,1) OVER (ORDER BY rn)=userid
THEN 0
ELSE 1
END) AS wether_e
FROM whether_login_rn
),
numbered_sequence AS (
SELECT userid,login_date,login_count,rn, wether_e,
SUM(wether_e) OVER (ORDER BY rn) AS lab
FROM whether_eq),
consecutive_logins_num AS (
SELECT userid,login_date,login_count,rn, wether_e,lab,
(SELECT (CASE WHEN max(COUNT(*))<3 THEN 0 ELSE 1 END)
FROM numbered_sequence b
WHERE b.rn BETWEEN a.rn - 6 AND a.rn
AND b.userid=a.userid
GROUP BY b. lab) AS cnt
FROM numbered_sequence a)
SELECT login_date,SUM(cnt) AS cont3_num
FROM consecutive_logins_num
WHERE login_date>=(SELECT MIN(login_date) FROM all_dates)+6
GROUP BY login_date
ORDER BY login_date;
Python
df = pd.read_csv("login_data.csv")
df["ts"] = pd.to_datetime(df["ts"]).dt.date
grouped = df.groupby("userid")
aligned_dates = pd.date_range(start=df["ts"].min(), end=df["ts"].max(), freq='D')
user_date_wether_con3days = []
for uid, group in grouped:
group = group.drop_duplicates('ts')
aligned_group = group.set_index("ts").reindex(aligned_dates)
consecutive_logins = aligned_group.rolling(window=7)
n = 0
date_wether_con3days = []
for r in consecutive_logins:
n += 1
if n<7:
continue
else:
ds = r['userid'].isna().cumsum()
cont_login_times = r.groupby(ds).userid.count().max()
wether_cont3days = 1 if cont_login_times>=3 else 0
date_wether_con3days.append(wether_cont3days)
user_date_wether_con3days.append(date_wether_con3days)
arr = np.array(user_date_wether_con3days)
day7_cont3num = np.sum(arr,axis=0)
result = pd.DataFrame({'dt':aligned_dates[6:],'cont3_num':day7_cont3num})
9.4 Calculate the next-day retention rate of new users per day
User login data table
id | userid | ts |
---|---|---|
1 | 466 | 2017-01-07 18:24:55 |
2 | 458 | 2017-01-07 18:25:18 |
3 | 458 | 2017-01-07 18:26:21 |
… | … | … |
SPL
A | |
---|---|
1 | =file(“login_data.csv”).import@tc() |
2 | =A1.group(userid;fst=date(ts):fst_login,~.(date(ts)).pos(fst+1)>0:wether_sec_login) |
3 | =A2.groups(fst_login+1:dt;count(wether_sec_login)/count(1):ret_rate) |
A2: Group by user; record the first login date and check whether the user logs in the next day.
A3: Calculate the next-day retention rate based on the login date of the next day.
SQL
WITH first_login AS (
SELECT userid, MIN(TRUNC(ts)) AS first_login_date
FROM login_data
GROUP BY userid),
next_day_login AS (
SELECT DISTINCT(fl.userid), fl.first_login_date, TRUNC(ld.ts) AS next_day_login_date
FROM first_login fl
LEFT JOIN login_data ld ON fl.userid = ld.userid
WHERE TRUNC(ld.ts) = fl.first_login_date + 1),
day_new_users AS(
SELECT first_login_date,COUNT(*) AS new_user_num
FROM first_login
GROUP BY first_login_date),
next_new_users AS(
SELECT next_day_login_date, COUNT(*) AS next_user_num
FROM next_day_login
GROUP BY next_day_login_date),
all_date AS(
SELECT DISTINCT(TRUNC(ts)) AS login_date
FROM login_data)
SELECT all_date.login_date+1 AS dt,dn. new_user_num,nn. next_user_num,
(CASE
WHEN nn. next_day_login_date IS NULL
THEN 0
ELSE nn.next_user_num
END)/dn.new_user_num AS ret_rate
FROM all_date
JOIN day_new_users dn ON all_date.login_date=dn.first_login_date
LEFT JOIN next_new_users nn ON dn.first_login_date+1=nn. next_day_login_date
ORDER BY all_date.login_date;
Python
df = pd.read_csv("login_data.csv")
df["ts"] = pd.to_datetime(df["ts"]).dt.date
gp = df.groupby('userid')
row = []
for uid,g in gp:
fst_dt = g.iloc[0].ts
sec_dt = fst_dt + pd.Timedelta(days=1)
all_dt = g.ts.values
wether_sec_login = sec_dt in all_dt
row.append([uid,fst_dt,sec_dt,wether_sec_login])
user_wether_ret_df = pd.DataFrame(row,columns=['userid','fst_dt','sec_dt','wether_sec_login'])
result = user_wether_ret_df.groupby('sec_dt').apply(lambda x:x['wether_sec_login'].sum()/len(x))
5. Calculate the increase of stock price on the day when it is higher than those on the previous and next 5 days
Stock price data table
STOCKID | DATE | CLOSING |
---|---|---|
62 | 2015-01-05 | 8.91 |
62 | 2015-01-06 | 8.31 |
62 | 2015-01-07 | 7.6 |
… | … | … |
SPL
A | |
---|---|
1 | =file(“STOCK.csv”).import@tc() |
2 | =lth=A1.len(),A1.pselect@a(#>4&&#<=A1.len()-4&&CLOSING>max(CLOSING[-4:-1])&&CLOSING>max(CLOSING[1:4])) |
3 | =A1.calc(A2,CLOSING/CLOSING[-1]-1) |
A2: The position where the stock price is higher than those of the previous and next 5 days.
A3: Calculate the increase at that time.
SQL
SELECT closing/closing_pre-1 AS raise
FROM(
SELECT dt, closing, ROWNUM AS rn,
MAX(closing) OVER (
ORDER BY dt ROWS BETWEEN 5 PRECEDING AND 1 PRECEDING) AS max_pre,
MAX(closing) OVER (
ORDER BY dt ROWS BETWEEN 1 FOLLOWING AND 5 FOLLOWING) AS max_suf,
LAG(closing,1) OVER (ORDER BY dt) AS closing_pre
FROM stock)
WHERE rn>5 AND rn<=(select count(*) FROM stock)-5
AND CLOSING>max_pre AND CLOSING>max_suf;
Python
stock_price_df = pd.read_csv('STOCK.csv')
price_increase_list = []
for i in range(5, len(stock_price_df)-5):
if stock_price_df['CLOSING'][i] > max(stock_price_df['CLOSING'][i-5:i]) and \
stock_price_df['CLOSING'][i] > max(stock_price_df['CLOSING'][i+1:i+6]):
price_increase = stock_price_df['CLOSING'][i] / stock_price_df['CLOSING'][i-1]-1
price_increase_list.append(price_increase)
result = price_increase_list
SPL Official Website 👉 https://www.scudata.com
SPL Feedback and Help 👉 https://www.reddit.com/r/esProcSPL
SPL Learning Material 👉 https://c.scudata.com
SPL Source Code and Package 👉 https://github.com/SPLWare/esProc
Discord 👉 https://discord.gg/2bkGwqTj
Youtube 👉 https://www.youtube.com/@esProc_SPL
Chinese version